- 无标题文档
查看论文信息

中文题名:

 SnO_2/导电聚合物异质结构纳米棒阵列的构筑及其电化学性能研究     

姓名:

 许旺旺    

学号:

 1049721200430    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 材料学    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

获奖论文:

 校优秀硕士学位论文    

院系:

 材料科学与工程学院    

专业:

 材料学    

研究方向:

 新能源材料    

第一导师姓名:

 麦立强    

第一导师院系:

 武汉理工大学    

完成日期:

 2014-11-01    

答辩日期:

 2014-12-12    

中文关键词:

 

二氧化锡 ; 纳米棒阵列 ; 聚苯胺 ; 异质结构 ; 聚吡咯

    

中文摘要:

 随着能源需求量的不断增长,太阳能、风能等可再生能源受到了前所未有的关注。与此同时,探索具备优良性能的新型储能设备也成为当今世界一个热点。锂离子电池,由于其比容量大、循环寿命长、充放电速率快等优点,在电子设备和电动汽车领域显示出巨大的实用价值。在锂离子电池中,电极材料既是至关重要的一部分同时也是制约锂离子电池发展的关键之一。因此,设计构筑新型电极材料兼具现实价值与理论意义。二氧化锡,作为一种新型的锂离子电池负极材料,由于其具有高容量、低成本、环境友好等优点,得到了人们越来越多的关注。

然而,二氧化锡作为电极材料也存在诸如以下的一些问题:二氧化锡在充放电过程中会产生较大的体积膨胀,不仅会破坏电极材料的结构,严重影响材料的循环性能,同时体积变化导致SEI膜的反复形成与破裂,消耗大量电解液中的锂离子导致库伦效率降低。另外,二氧化锡较低的电子电导和离子电导使得电极材料难以实现高倍率充放电。因此,如何解决二氧化锡在充放电过程的膨胀破碎等问题,以及提高电子电导率和离子电导率,以提高其循环性能和倍率性能,是本文的主要任务。

本论文工作采用水热法制备出形貌均一的二氧化锡纳米棒阵列,并采用电化学沉积的方法,成功的构筑出二氧化锡/导电聚合物纳米棒阵列结构,得到电化学性能更为优异的纳米棒阵列电极材料。本文采用多种测试手段对所得的二氧化锡/导电聚合物纳米棒阵列的合成、结构以及性能进行了系统的研究,并解释其生长机理以及结构性能相关性,主要内容和研究成果如下:

(1)利用合成出的形貌均一的二氧化锡纳米棒阵列,采用电化学沉积的方法成功构筑出二氧化锡/聚苯胺异质结构纳米棒阵列,对所得样品进行XRD、SEM、FTIR等结构、物相分析表征,分析所得产物制备参数与形貌结构之间的关系,并解释其生长机理。

(2)对二氧化锡/聚苯胺异质结构纳米棒阵列进行电化学性能测试,结果表明在所得的两种异质结构的二氧化锡/聚苯胺异质结构纳米棒阵列中,二氧化锡/聚苯胺异质分支结构显示出相对优异的循环稳定性和倍率特性。在100圈循环后,依然有506 mAh/g的比容量。在20圈到100圈次容量衰减率仅有0.579%,远低于二氧化锡/聚苯胺纳米片分级结构(1.150%)以及二氧化锡纳米棒阵列结构(1.151%)。这一性能优异得益于二氧化锡/聚苯胺异质结构良好的机械完整性以及三维的电子传到特性。

(3)采用恒流计时法沉积聚吡咯薄膜,分别成功构筑出二氧化锡/聚吡咯同轴结构以及二氧化锡/聚吡咯薄膜状结构。利用聚吡咯较高的导电率以及离子渗透率,提高其倍率性能以及循环性能。对其进行TEM, FTIR, EDS等形貌、物相表征,分析所得产物物相和形貌之间的关系,并解释其改性机理。

(4)采用恒流充放电法,交流阻抗等测试方法对所得产物进行电化学性能表征,发现二氧化锡/聚吡咯薄膜状结构的电化学相性能相比于二氧化锡/聚吡咯同轴结构以及未包覆的二氧化锡在循环性能和倍率性能上都有很大的提高。在200 mA/g的电流密度下,经过300次循环后其比容量为683 mAh/g,其在20圈到第300圈时的次容量衰减率仅为0.097%,远低于二氧化锡/聚吡咯同轴结构0.627%以及二氧化锡纳米棒阵列结构(3.14%)。其优异的电化学性能的原因在于,二氧化锡/聚吡咯薄膜状结构能够有效地缓解充放电过程中体积膨胀产生的应力。同时,相比于同轴结构离散型三维电子传导,以及阵列结构一维的电子传导,二氧化锡/聚吡咯薄膜状结构连续三维电子传导能够更好的改善其电子导电率。

参考文献:

[1]Armand, M. & Tarascon, J.-M. Building better batteries[J]. Nature, 2008, 451, 652-657.

[2]Yang Z G, Zhang J L, Kintner-Meyer M C W, et al. Electrochemical Energy Storage for Green Grid [J]. Chemical Reviews, 2011, 111: 3577-3613.

[3]Aricò A S, BruceP, ScrosatiB, et al. Nanostructured Materials for Advanced Energy Conversion and Storage Devices[J]. Nature Materials,2005, 4: 366 – 377.

[4]Dunn, B, Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334, 928-935.

[5]Rolison, D R& Nazar, L F. Electrochemical energy storage to power the 21st century[J]. MRS Bulletin, 2011, 36, 486-493.

[6]ConwayB E. Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage[J]. Journal of the Electrochemical Society, 1991,138: 1539-1548.

[7]RolisonD R, LongJ W, LytleJ C, et al. Multifunctional 3D Nanoarchitectures for Energy Storage and Conversion [J]. Chemical Society Reviews, 2009, 38: 226-252.

[8]MajumdarA, Opportunities and challenges for a sustainable energy future[J]. Nature,2012, 488, 294-303.

[9]BruceP G, Scrosati, B& TarasconJ M. Nanomaterials for rechargeable lithium batteries[J]. Angewandte Chemie International Edition, 2008, 47, 2930-2946.

[10]EtacheriV, MaromR, ElazariR, et al. Challenges in the Development of Advanced Li-Ion Batteries: a Review [J]. Energy & Environmental Science, 2011, 4: 3243-3262.

[11]Mizushima K, Jones P C, Wiseman P J, et a1. LixCoO2 (0

[12]TarasconJ M, ArmandM. Issues and Challenges Facing Rechargeable Lithium Batteries[J]. Nature, 2001, 414: 359-367

[13]WhittinghamM S. Lithium Batteries and Cathode Materials [J].Chemical Reviews, 2004, 104: 4271-4301.

[14]SunY K, MyungST, ParkB C, et al. High-Energy Cathode Material for Long-Life and Safe Lithium Batteries [J]. Nature Materials, 2009, 8: 320-324.

[15]陈立泉. 新能源材料[M]. 天津: 天津大学出版社, 2000.

[16]WhittinghamM S. Lithium Batteries and Cathode Materials [J].Chemical Reviews, 2004, 104: 4271-4301.

[17]IijimaS, Helical microtubules of graphitic carbon[J]. Nature, 1991, 354, 56-58.

[18]潘钦敏,郭坤琨,王玲治,等. 离子聚合物包覆的锂离子电池炭负极材料 [J]. 电池,32 (S1) :38.

[19]Sato K,Noguchi M,Demachi A,et al. A mechanism of lithiumstorage in disordered carbons[J]. Science,1994,264 (22):556.

[20]Giselle Sandi, Randall E Winans, Kathleen A Carrado. Newcarbon electrodes for secondary lithium batteries [J]. J. Elec- trochem. Soc,1996,143(5): L95.

[21]Tamura N,Ohshita R,Fujimoto M, Fujitani S, Kamino Mand Yonezu I. Study on the anode behavior of Sn and Sn-Cu alloy thin-fiIm electrodes[J]. J. Power Sources, 2002, 1 07: 48—55.

[22]Ui K, Kikuehi S, Kadoma Y, Kumagai N and Ito S. Electrochemical characteristics of Sn film prepared by pulse electrodeposition method as negative electrode for lithium secondary batteries[J]. J. Power Sources, 2009, 1 89: 224-229.

[23]Wang J,Du N,Zhang H,Yu Jand Yang Deren. Cu-Sn core-shell nanowire arrays as three-dimensional electrodes for lithium-ion batteries[J]. J. Phys. Chem. C, 201l, 115: 23620. 23624.

[24]Du Z, Zhang S,Xing Y and Wu X. Nanocone-arrays supported tin-based anode materials for lithium-ion battery[J]. J. Power Sources, 2011, 196: 9780-9785.

[25]ShenoudaA Y, & LiuH K. Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode[J]. Journal of Alloys and Compounds, 2009, 477, 498-503.

[26]SiQ, HanaiK, ImanishiN, et al. Highly reversible carbon–nano-silicon composite anodes for lithium rechargeable batteries[J]. Journal of Power Sources, 2009, 189, 761-765.

[27]Demir-Cakan R, Hu Y S, Antonietti M, Maier J, and TitiriciMM. Facile one-pot synthesis of mesoporous Sn02 microsphores via nanoparticles assembly and lithium storageproperties[J]. Chem. Mater. , 2008, 20: 1227—1229.

[28]LiH, Huang Xand ChenL. Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries[J]. J. Power Sources, 1999, 8 1-82; 340-345.

[29]Aurbach D, Nimberger A,Markovsky B,LeviE, SominskiE. and GedankenA. Nanoparticles of She produced by sonoehemistry as anode materials for rechargeablelithium batteries[J]. Chem. Mater. ,2002, 14: 4 155-4163.

[30]NingJ,DaiQ, Jiang T,MenK, LiuD, XiaoN, LiC, LiD, LiuB, ZouB, ZouG, and Yu W W. Facile synthesis of tin oxide nanoflowers: a potential high-capacity lithium-ion-storage material[J]. Langmuir,2009. 25: 1818-1821.

[31]Zhu J, Lu Z, Aruna ST,D. Aurbach and A. Gedanken. Sonochemical synthesis of SnO2nanoparticles and their preliminary study as Li insertion electrodes[J]. Chem. Mater. , 2000, 12: 2557. 2566.

[32]Guo ZP, Du GD, NuliY, HassanME and LiuHK, Ultra—fine porous SnO2 nanopowder prepared via a molten salt process: a hiighly efficient anode material forlithium-ion batteries[J].J. Mater. Chem. ,2009, 1 9: 3253-3257.

[33]Che GL,Lakshmi B B, Fisher ER, et al. Carbon nanotubulemembranes for electrochemical energy storage and production[J]. Nature,1998,393(28):346.

[34]Endo M, Kim Y A,Hayashi T,et al. Vapor-grown carbonfibers (VGCFs): basic properties and their battery applications[J]. Carbon,2001,39(9):1287.

[35]Nishimura K, Kim YA,Matushita T,et al. Structural characterization of boron-doped submicron vapor-grown carbonfibers and their anode performance[J]. J. Mater. Res. ,2000,15(6):1303.

[36]Fan YY,Li F,CHENG HM,et al. Preparation,morphology,and microstructure of diameter-controllable vapor–growncarbon nanofibers[J]. J Mater Res,1998,13 (8):2342.

[37]董健,李晓锋,严磊,等. 锂离子电池碳阳极材料的研究进展 [J]. 新型碳材料, 1998, 13 (3):55

[38] 阚素荣,吴国良,卢世刚,等. 国产石墨作为锂离子蓄电池负极材料的性能 [J]. 电源技术, 2002, 26(2):66.

[39]Menachem C,WangY, Flowers J, et a1. Characterization of lithiated natural graphite before and after mild oxidation[J]. Journal ofPower Sources, 1998, 76(2): 180. 185

[40]Aurbach D, Review of selected electrode—solution interactions which determine the performance Li and Li ion batteries[J]. Journal of Power Sources, 2000, 89(2): 206. 218

[41]张文, 龚克成. 锂离子电池用碳负极材料[J]. 电池, 1997, 27(3): 132—137

[42]彭红瑞, 吕莎莎, 李桂村. 石墨烯/Sn02/聚苯胺纳米复合材料的制备与表征[J]. 青岛理工大学学报, 2011, 32(5): 6-9

[43]吴国良. 锂离子电池负极材料的现状与发展[J]. 电池, 2001, 31(2): 54—57

[44]DongY Z, ZhaoY M,Shi Z D, et al. The Structure and Electrochemical Performance of LiFeBO3 as a Novel Li-Battery Cathode Material[J]. Electrochimica Acta, 2008, 53: 2339-2345.

[45]LeeH Y,& LeeS M, Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries[J]. Electrochemical. Communication, 2004, 6, 465-469.

[46]XuC, KimM., ChungS, et al. The formation of SiGaN/SiOxNy nanocables and SiOxNy-based nanostructures using GaN as a resource of Ga[J]. Chemical Physics Letters, 2004, 398, 264-269.

[47]HuB, MaiL, ChenW, et al. From MoO3 nanobelts to MoO2 nanorods: structure transformation and electrical transport[J]. ACSNano, 2009, 3, 478-482.

[48]MaiL Q, HuB, HuT, et al. Electrical Property of Mo-Doped VO2 Nanowire Array Film by Melting-Quenching Sol-Gel Method[J]. J. Phys Chem B, 2006, 110, 19083-19086.

[49]Kim,S.,Jeong,M. C.,Oh,B. Y. et al. Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering[J]. Journal of Crystal Growth,2006,290,485-489.

[50]高倩,麦立强,徐林 et al.钒氧化物一维纳米材料的构筑与电输运性能[J]. 中国科技论文在线, 2010, 5, 323-331.

[51]ChenW, XuQ, HuY S, et al. Effect of modification by poly (ethylene oxide) on the reversibility of insertion/extraction of Li+ ion in V2O5 xerogel films[J]. Journal of Material Chemistry, 2002, 12, 1926-1929.

[52]KimJ K, ChoiJ W, Cheruvally, G. et al. A modified mechanical activation synthesis for carbon-coated LiFePO4 cathode in lithium batteries[J]. Material Letters, 2007, 61, 3822-3825.

[53]MaiL Q, ChenW, XuQ, et al.Effect of modification by poly (ethylene-oxide) on the reversibility of Li insertion/extraction in MoO3 nanocomposite films[J]. Microelectronic Engineering, 2003, 66, 199-205.

[54]HsuM C, LeuI C, SunY M, et al. Fabrication of CdS@TiO2 coaxial composite nanocables arrays by liquid-phase deposition[J]. Journal of Crystal Growth, 2005, 285, 642-648.

[55]Subba ReddyC V, JinA P, ZhuQ Y, et al. Preparation and characterization of (PVP+ NaClO4) electrolytes for battery applications[J]. The European Physical Journal E: Soft Matter and Biological Physics, 2006, 19, 471-476.

[56]ZhangW M, WuX L, HuJ S, et al. Carbon Coated Fe3O4 Nanospindles as a Superior Anode Material for LithiumIon Batteries[J]. Advanced Function Material, 2008, 18, 3941-3946.

[57]EderD, Carbon Nanotube-Inorganic Hybrids[J]. Chemical Review, 2010, 110, 1348-1385.

[58]ChenL, YuanC, DouH, et al. Synthesis and electrochemical capacitance of core-shell poly (3, 4-ethylenedioxythiophene) /poly (sodium4-styrenesulfonate) modifiedmultiwalled carbon nanotube nanocomposites[J]. Electrochimica Acta, 2009, 54, 2335-2341.

[59]MaiL Q, ChenW, XuQ, et al. Mo doped vanadium oxide nanotubes: microstructure and electrochemistry[J]. Chemical Physics Letters, 2003, 382, 307-312.

[60]RileyL A, CavanaghA S, GeorgeS M, et al. Conformal Surface Coatings to Enable High Volume Expansion Li-Ion Anode Materials[J]. Chemistry Physics Chemsitry, 2010, 11, 2124-2130.

[61]Storey C, Kargina I, Grincourt Y, et al. Electrochemical Characterization of a New High Capacity Cathode [J]. Journal of Power Sources, 97-98: 541-544.

[62]PrasadA, KubinskiD, & GoumaP. Comparison of sol–gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection[J]. Sensors and Actuators B: Chemical,2003,93,25-30.

[63]Xu X X, TakadaK, Watanabe K, et al. Self-Organized CoreShell Structure for High-Power Electrode in Solid-State Lithium Batteries [J]. Chemistry of Materials, 2011, 23: 3798-3804.

[64]MaH, ZhangS Y, JiW Q, et al. α-CuV2O6 Nanowires: Hydrothermal Synthesis andPrimaryLithium Battery Application [J].Journal of The American Chemical Society, 2008, 130: 5361-5367.

[65]Wu R, Qian X, Yu F, et al. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials[J]. Journal of Materials Chemistry A, 2013, 1(37): 11126-11129.

[66]Li L, Nan C, Lu J, et al. α-MnO2 nanotubes: high surface area and enhanced lithium battery properties[J]. Chem. Commun., 2012, 48(55): 6945-6947.

[67]Mai L, Xu L, Han C, et al. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries[J]. Nano letters, 2010, 10(11): 4750-4755.

[68]Xu X, Cao R, Jeong S, et al. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries[J]. Nano letters, 2012, 12(9): 4988-4991.

[69]Wang Z, Xiang L, Xu H, et al. Porous anatase TiO2 constructed from a metal-organic framework for advanced lithium-ion battery anode[J]. Journal of Materials Chemistry A, 2014.

[70]Lou X W, Deng D, Lee J Y, et al. Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties[J]. Chemistry of Materials, 2008, 20(20): 6562-6566.

[71]Lou X W, Li C M, Archer L A. Designed synthesis of coaxial SnO2@ carbon hollow nanospheres for highly reversible lithium storage[J]. Advanced Materials, 2009, 21(24): 2536-2539.

[72]WuH, ChanG, ChoiJ W, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control[J]. Nature nanotechnology, 2012, 7(5): 310-315.

[73]Xu L F, Liao Q, Zhang J P, et al. Single-crystalline ZnO nanotube arrays on conductive glass substrates by selective disolution of electrodeposited ZnO nanorods[J]. J. Phys. Chem. C, 2007, 111(12): 4549-4552.

[74]Michailowski A, Almawlawi D, Cheng G S, et al. Highly regular anatase nanotube arrays fabrieated in porous anodic templates[J]. Chem. Phys. Lett., 2001, l(1-2): 49-53.

[75]Lambert,T. N.,Davis,D. J.,Lu,W. et al. Graphene–Ni–α-MnO2 and–Cu–α-MnO2 nanowire blends as highly active non-precious metal catalysts for the oxygen reduction reaction[J]. Chemical Communications,2012,48,7931-7933.

[76]刘青芳, 王建波, 彭勇等. 铁镍合金纳米线阵列的制备与穆斯堡尔谱研究[J].物理学报, 2001(10): 2008-2011.

[77]Vayssieres L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Adv. Mater., 2003, 15(5): 464-466.

[78]Chan C K, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature nanotechnology, 2007, 3(1): 31-35.

[79]LiY, TanB, WuY. Freestanding mesoporous quasi-single-crystalline Co3O4 nanowire arrays[J]. Journal of the american chemical society, 2006, 128(44): 14258-14259.

[80]KimJ G, NamS H, LeeS H, et al. SnO2 nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage[J]. ACS applied materials & interfaces, 2011, 3(3): 828-835.

[81]Han C, Pi Y, An Q, et al. Substrate-assisted self-organization of radial β-AgVO3 nanowire clusters for high rate rechargeable lithium batteries[J]. Nano letters, 2012, 12(9): 4668-4673.

[82]Liu J, Li Y, Huang X, et al. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries[J]. Journal of Materials Chemistry, 2009, 19(13): 1859-1864.

[83]Saxena V, Malhotra B D. Prospects of conducting polymers in molecular electronics[J]. Current Applied Physics, 2003, 3(2-3): 293-305.

[84]Boyano I, Bengoechea M, MeatzaI, et al.Improvement in the PPy/V2O5 hybrid as a cathode materialfor Li ion batteries using PSA as an organic additive[J]. J. Power Sources, 2007, 166(2): 471-477.

[85]董先明, 张淑婷, 罗颖. 聚吡咯在气体传感器中的应用[J]. 材料导报, 2007, 21(1): 53-55.

[86]Winter I,Reese C,Hormes J,et al.The thermal ageing of poly(3,4-ethylenedioxythiophene) and investigation by X-ray absorption and X-ray photoelectron spectroscopy[J]. Chem.Phys.,1995,194(1):207-213.

[87]Groenendaal LB,Jonas F,Freitag D,et al.Poly(3,4-ethylenedioxythiophene)and its derivatives: past,present and future[J].Adv.Mater.,2000,12(7):481-494.

[88]Ha YH,Nikolov N,Pollack SK,et al.Towards a transparent,highly conductive poly(3,4-ethylenedioxythiophene)[J]. Adv.Funct.Mater.,2004,14(6):615-622.

[89]马利,汤琪. 导电高分子材料聚苯胺的研究进展[J].重庆大学学报, 2002, 25(2): 124-127.

[90]Tang W, Liu L, Zhu Y, et al. An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4[J]. Energy & Environmental Science, 2012, 5(5): 6909-6913.

[91]Sun M, Zhang S, Jiang T, et al. Nano-wire networks of sulfur–polypyrrole compositecathodematerials for rechargeable lithium batteries[J]. Electrochemistry Communications, 2008, 10(12): 1819-1822.

[92]Jeong J M, Choi B G, Lee S C, et al. Hierarchical hollow spheres of Fe2O3@ polyaniline for lithium ion battery anodes[J]. Advanced Materials, 2013, 25(43): 6250-6255.

[93]Li W, Zhang Q, Zheng G, et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance [J]. Nano letters, 2013, 13(11): 5534-5540.

[94]Yao Y, Liu N, McDowell M T, et al. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings[J]. Energy Environ. Sci., 2012, 5(7): 7927-7930.

[95]Mai L, Dong F, Xu X, et al. Cucumber-like V2O5/poly (3, 4-ethylenedioxythiophene) &MnO2 nanowires with enhanced electrochemical cyclability[J]. Nano letters, 2013, 13(2): 740-745.

[96]Huang J Y, Zhong L, Wang C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode[J]. Science, 2010, 330(6010): 1515-1520.

[97]Liang J, Yu X Y, Zhou H, et al. Bowl‐like SnO2@ Carbon Hollow Particles as an Advanced Anode Material for Lithium-Ion Batteries[J]. Angewandte Chemie International Edition, 2014.

[98]Guan C, Wang X, Zhang Q, et al. Highly Stable and Reversible Lithium Storage in SnO2 Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition[J]. Nano letters, 2014, 14(8): 4852-4858.

[99]Chen Y, Qu B, Hu L, et al. High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet–nanowire cluster arrays as self-supported electrodes[J]. Nanoscale, 2013, 5(20): 9812-9820.

[100]Xia X, Chao D, Qi X, et al. Controllable Growth of Conducting Polymers Shell for Constructing High-Quality Organic/Inorganic Core/Shell Nanostructures and Their Optical-Electrochemical Properties[J]. Nano letters, 2013, 13(9): 4562-4568.

[101]Cui L, et al. SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries[J].Journal of Power Sources, 2011, 196(4): 2195-2201.

中图分类号:

 TM912    

馆藏号:

 TM912/0430/2014    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式