- 无标题文档
查看论文信息

中文题名:

 金属双极板质子交换膜燃料电池内阻研究    

姓名:

 陈骏    

学号:

 1049721200290    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080502    

学科名称:

 材料学    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 武汉理工大学    

院系:

 材料科学与工程学院    

专业:

 材料学    

研究方向:

 燃料电池    

第一导师姓名:

 潘牧    

第一导师院系:

 武汉理工大学    

完成日期:

 2014-10-10    

答辩日期:

 2014-12-10    

中文关键词:

 质子交换膜燃料电池 ; 内阻 ; 接触电阻 ; 开孔率 ; 耐久性    

中文摘要:

      质子交换膜燃料电池(PEMFC)是一种清洁环保,能够适用于汽车,便携式电源,备用电源的电化学发电装置。内阻是导致燃料电池电压损失的一个重要因素,从而制约着其功率输出。特别是采用金属双极板的电堆,比功率得到极大的提升,但是金属板与碳纸的接触电阻因材质不同而成为了新的问题。因此对金属板PEMFC内阻进行相关研究,对于如何有效降低欧姆损耗,提高燃料电池性能具有重要意义。

      本文首先对金属板电堆整体性能和内阻及其工况进行了相关实验研究,得出了(1)不同工况(加湿度,背压,水压)对电堆性能和内阻有较大的影响,最佳加湿度为阳极80%,阴极100%;(2)金属板电堆在1A/cm2的电流密度下,欧姆极化占总极化的40.4%,而石墨板为34.6%;(3)金属板燃料电池膜的内阻占总内阻不到20%,目前内阻的主要问题是金属板接触电阻。

      本文其次对金属板相关接触电阻进行了研究,结果表明(1)在较低压力下,接触电阻随压力增大而下降的速率比较快,当压力>1Mpa时,接触电阻趋于不变;(2)金属板与扩散层接触电阻RBP-GDL为13.1mΩ·cm2,金属板之间的接触电阻RBP-BP为7.5mΩ·cm2;(3)金属板开孔率从0增加到40%左右时,接触电阻没变太大的变化;当开孔率继续增加,接触电阻开始增加,尤其在开孔率大于45%后,出现急剧增大的现象。

      本文最后还考察了内阻与电堆耐久性的关系。结果表明(1)电堆平均电压随运行时间增长缓慢下降,内阻缓慢增大,内阻是造成性能衰减的重要因素;(2)从0到2000小时的耐久性测试中,在800mA/cm2下,性能衰减了14.34 %,而内阻增大了32.11%,由欧姆损耗带来的性能衰减占总电压损失的52.04%;(3)第一片的衰减程度最大,第十片的衰减程度最小,对于第一片,由欧姆损耗带来的衰减的比例占它总衰减的34.49%,要低于整个电堆的平均水平。电堆均一性降低的主要原因可能是各单片的膜,催化剂,碳纸等的损坏程度不一。

参考文献:

[1]衣宝廉. 燃料电池-原理技术应用[M].北京:化学工业出版社,2003:161-162.

[2]Carrette L, Friedrich K A, Stimming U. Fuel cells: principles, types, fuels, and applications[J]. ChemPhysChem, 2000, 1(4): 162-193.

[3]Berning T, Lu D M, Djilali N. Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J]. Journal of Power Sources, 2002, 106(1): 284-294.

[4]KORDESCH K,SIMANDER G. Fuel cell and their applications[M].Weinheim,Germany:VCH,1996:73.

[5]Jao T-C, Jung G-B, Chi P-H, et al. Investigation of degradation behavior of membrane electrode assembly with polytetrafluoroethylene/Nafion composite membrane [J]. Journal of Power Sources, 2011, 196(4): 1818-1825.

[6]Larminie J, Dicks A, McDonald M S. Fuel cell systems explained [M]. Wiley New York, 2003.

[7]O'Hayre R P, Cha S-W, Colella W, et al. Fuel cell fundamentals [J]. 2006.

[8]Christoffersen E, Liu P, Ruban A, et al. Anode materials for low-temperature fuel cells: a density functional theory study[J]. Journal of Catalysis, 2001, 199(1): 123-131.

[9]Grove W R. XXIV. On voltaic series and the combination of gases by platinum[J]. The London and Edinburgh philosophical magazine and journal of science, 1839, 14(86): 127-130.

[10]Blomen L J M J,Mugerwa M N. Fuel Cell System[M].New York:Plenum Press,1993:201-244.

[11]Mond L, Langer C. A new form of gas battery[J]. Proceedings of the Royal Society of London, 1889, 46(280-285): 296-304.

[12]Andújar J M, Segura F. Fuel cells: History and updating. A walk along two centuries[J]. Renewable and sustainable energy reviews, 2009, 13(9): 2309-2322.

[13]Litster S, Mclean G. PEM fuel cell electrodes [J]. Journal of Power Sources, 2004, 130(1–2): 61-76.

[14]詹姆斯?拉米尼,安德鲁?迪克斯. 燃料电池系统—原理?设计?应用[M].朱红译.北京:科学出版社,2005:5-10.

[15]张华民,明平文. 质子交换膜燃料电池的发展现状[J]. 当代化工,2001, 30(1): 7-11.

[16]杨乐斌, 沈杭燕, 舒康颖. 质子交换膜燃料电池膜电极组件评述[J]. 材料导报, 2013, 27(21).

[17]Mehta V, Cooper J S. Review and analysis of PEM fuel cell design and manufacturing[J]. Journal of Power Sources, 2003, 114(1): 32-53.

[18]Elter J F. Polymer Electrolyte (PE) Fuel Cell Systems[M]//Fuel Cells. Springer New York, 2013: 433-472.

[19]Haile S M. Fuel cell materials and components[J]. Acta Materialia, 2003, 51(19): 5981-6000.

[20]Vishnyakov V M. Proton exchange membrane fuel cells[J]. Vacuum, 2006, 80(10): 1053-1065.

[21]Colleen S. Spiegel著,马欣等译. 燃料电池设计与制造. 北京:电子工业出版社,2008.

[22]Um S, Wang C Y, Chen K S. Computational fluid dynamics modeling of proton exchange membrane fuel cells[J]. Journal of the Electrochemical society, 2000, 147(12): 4485-4493.

[23]邢丹敏,杜学忠,于景荣,等. 燃料电池用质子交换膜研究进展[J]. 电源技术,2001, 25(3): 171-174.

[24]Mariana Ciureanu, Raymond Roberge. Electrochemical Impedance Study of PEM Fuel Cells. Experimental Diagnostics and Modeling of Air Cathodes[J].J. Phys. Chem. B,2001,105: 3531-3539.

[25]Xiaozi Yuan, HaijiangWang, Jian Colin Sun, et al. AC impedance technique in PEM fuel cell diagnosis—A review[J]. International Journal of Hydrogen Energy,2007,32:4365 – 4380.

[26]张金辉,裴普成.质子交换膜燃料电池欧姆阻抗的试验研究[J].清华大学学报,2007,47(2):228-231.

[27]O’Hayre,R等著,王晓红等译.燃料电池基础[M].北京: 电子工业出版社,2007.10.

[28]Mariana Ciureanu, Raymond Roberge. Electrochemical Impedance Study of PEM Fuel Cells. Experimental Diagnostics and Modeling of Air Cathodes[J].J. Phys. Chem. B,2001,105: 3531-3539

[29]Xiaozi Yuan, HaijiangWang, Jian Colin Sun, et al. AC impedance technique in PEM fuel cell diagnosis—A review[J]. International Journal of Hydrogen Energy,2007,32:4365 – 4380.

[30]DOE“Department of Energy”,http://www.sc.doe.gov/bes/hydrogen.pdf,accessed on:05/03/2013.

[31]T.E. Springer, T.A. Zawodizinski, S. Gottesfeld. Polymer Electrolyte Fuel Cell Model[J].J Electrochem. Soc, 1991, 138 (8): 2334-2342.

[32]Chunxin Ji, Hubert Gasteiger, Wenbin Gu, et al. PEM Fuel Cell Electrode Design for Automotive Application: Performance and Durability[R].DICP Symposium (XVI) on Fuel Cells, Dalian, China. May 25th–28th, 2008.

[33]于景荣,衣宝廉等. Nafion膜厚度对质子交换膜燃料电池性能的影响. 电源技术,2001,25(6):384-386.

[34]张东方,潘牧等. 四电极质子补偿法测量质子交换膜的电导率. 电池工业, 2003,8(1):11-13.

[35]F. N. Buchi and G. G. Scherer, In-situ resistance measurements of Nafion 117 membranes in polymer electrolyte fuel cells[J].J. Electroanal. Chem., 404, 37 (1996).

[36]Yoshitsugu Sone, Per Ekdunge, Daniel Simonsson. Proton Conductivity of Nafion 117 as Measured by a Four-Electrode AC Impedance Method[J].J.Electrochem.Soc, 1996,143 (4): 1254-1259.

[37]Christopher J.Netwall, Benjamin D.Gould, et al. Decreasing contact resistance in proton-exchange membrane fuel cells with metal bipolar plates[J]. Journal of Power Sources, 227(2013):137-144.

[38]Milenko Braunovic, Valery V. Konchits, et al. Electrical Contacts Fundamentals,Applications and Technology, 1999.

[39]王文增,王宇新. 石墨板-碳纸接触电阻的测量. 电源技术,2005,29(9):599-601.

[40]宋海民等. 基于实验本构关系的接触电阻预测方法研究. 电源技术,2007,31(1):68-71.

[41]宋海民. 质子交换膜燃料电池接触电阻的预测方法研究[D].天津:天津大学,2007.

[42]吴芝亮. 质子交换膜燃料电池接触电阻数学建模与参数分析[D].天津:天津大学,2008.

[43]尹燕,杜青等. 组装载荷对PEM燃料电池接触电阻及性能的影响. 中国科技论文在线,2010,05(11).

[44]Davies D P, Adcock P L, Turpin M, et al. Bipolar plate materials for solid polymer fuel cells[J]. Journal of Applied Electrochemistry, 2000, 30(1): 101-105.

[45]梁鹏等. 镀银-石墨涂层316L不锈钢双极板的电化学性能测试及表征. 物理化学学报,2010,26(3):595-600.

[46]Shine Joseph, J.C.McClure, et al. Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy,30 (2005): 1339–1344.

[47]S.B.Lee, K.H.Cho, et al. Improved corrosion resistance and interfacial contact resistance of 316L stainless-steel for proton exchange membrane fuel cell bipolar plates by chromizing surface treatment[J].Journal of Power Sources 187(2009):318-323.

[48]Rujin Tian, Juncai Sun, et al. Plasma-nitrided austenitic stainless steel 316L as bipolar plate for PEMFC[J].International Journal of Hydrogen Energy,31(2006):1874-1978.

[49]Yu Fu, Ming Hou, et al.Coated 316L stainless steel with CrxN film as bipolar plate for PEMFC prepared by pulsed bias arc ion plating[J].Journal of Power Sources 176(2008):282-286.

[50]张海峰,衣宝廉等. 流场尺寸对质子交换膜燃料电池性能的影响.电源技术,2004,28(8):494-497.

[51]Melik Sahraoui, Youssef Bichioui, et al.Three-dimensional modeling of water transport in PEMFC[J].International Journal of Hydrogen Energy,38(2013):8524-8531.

[52]Xianguo Li, Imran Sabir. Review of bipolar plates in PEM fuel cells:Flow-field designs[J].International Journal of Hydrogen Energy,30(2005):359-371.

[53]Cunningham B, Baird D G. The development of economical bipolar plates for fuel cells[J]. Journal of Materials Chemistry, 2006, 16(45): 4385-4388.

[54]Trogadas P, Parrondo J, Ramani V. Degradation mitigation in polymer electrolyte membranes using cerium oxide as a regenerative free-radical scavenger[J]. Electrochemical and Solid-State Letters, 2008, 11(7): B113-B116.

[55]Rujin Tian, Juncai Sun, et al.Plasma-nitrided austenitic stainless steel 316L as bipolar plate for PEMFC[J].International Journal of Hydrogen Energy,31(2006):1874-1878.

[56]Heli Wang, et al.Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells[J].Journal of Power Sources115(2003):243-251.

[57]D.Busick,M.Wilson,et al.New Materials for Batteries and Fuel Cells[J].Proceedings of the Symposium of Materials Research Society,vol.575.

[58]Scholta J, Rohland B, Trapp V, et al. Investigations on novel low-cost graphite composite bipolar plates[J]. Journal of Power Sources, 1999, 84(2): 231-234.

[59]Murphy O J, Cisar A, Clarke E. Low-cost light weight high power density PEM fuel cell stack[J]. Electrochimica Acta, 1998, 43(24): 3829-3840.

[60]Shine Joseph,et al.Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells[J].International Journal of Hydrogen Energy, 30(2005):1339-1344.

[61]吴玉厚,张勇等. PEM燃料电池操作性能的实验研究. 沈阳建筑大学学报,2005,21(4):395-398.

[62]钟振忠. 燃料电池测量技术研究. 浙江工贸职业技术学院学报,2014,14(1):31-35.

[63]Reshetenko T V, Bender G, Bethune K, et al. Systematic study of back pressure and anode stoichiometry effects on spatial PEMFC performance distribution[J]. Electrochimica Acta, 2011, 56(24): 8700-8710.

[64]Barbir F. PEM fuel cells: theory and practice[M]. Academic Press, 2013.

[65]Larminie J, Dicks A, McDonald M S. Fuel cell systems explained[M]. New York: Wiley, 2003.

[66]Smitha B, Sridhar S, Khan A A. Solid polymer electrolyte membranes for fuel cell applications—a review[J]. Journal of Membrane Science, 2005, 259(1): 10-26.

[67]Mehta V, Cooper J S. Review and analysis of PEM fuel cell design and manufacturing[J]. Journal of Power Sources, 2003, 114(1): 32-53.

[68]Kraytsberg A, Auinat M, Ein-Eli Y. Reduced contact resistance of PEM fuel cell's bipolar plates via surface texturing[J]. Journal of Power Sources, 2007, 164(2): 697-703.

[69]J.G. Clulow, F.E. Zappitelli, C.M. Carlstrom, J.L. Zemsky, D.N. Busick, M.S. Wilson,2002 AIChE Spring National Meeting, March 10–14, New Orleans, 2002.

[70]Mishra V, Yang F, Pitchumani R. Measurement and prediction of electrical contact resistance between gas diffusion layers and bipolar plate for applications to PEM fuel cells[J]. Journal of Fuel Cell Science and Technology, 2004, 1(1): 2-9.

[71]H.A. Gastegier (Eds.) Handbook of Fuel Cells, Fundamentals,Technology and Applications, Vol. 3, Fuel Cell Technology and Applications. New York: John Wiley & Sons, Ltd.2003.

[72]Hentall P L, Lakeman J B, Mepsted G O, et al. New materials for polymer electrolyte membrane fuel cell current collectors[J]. Journal of Power Sources, 1999, 80(1): 235-241.

[73]R. Holm and R. Stormer, Eine Kontrolle des metallischen Charakters von gereinigten Platinkontakten. Wiss. Veroff. Siemens-Werk, 1930, 9(2):323.

[74]Ragnar Holm, Electric Contacts: Theory and Application, Fourth Edition,New York: Springer-Verlag, 1967: 1-20.

[75]D.P. Wilkinson, J. St-Pierre, in: W. Vielstich, H.A. Gasteiger, A. Lamm (Eds.),Handbook of Fuel Cells: Fundamentals, Technology and Applications, vol. 3,John Wiley & Sons Ltd., 2003, pp. 611–626.

[76]Ye S, Hall M, Cao H, He P. Degradation resistant cathodes in polymer electrolyte membrane fuel cells[J]. ECS Trans 2006,3(1):657–66.

[77]Heneka MJ, Ivers-Tiffee E. Accelerated life tests for fuel cells[J].ECS Trans 2006;1(8):377–84.

[78]Pierpont D, Hicks M, Watschke T, Turner P. Accelerated testing and lifetime modeling for the development of durable fuel cell MEAs[J]. ECS Trans 2006,1(8):229–37.

[79]Knights SD, Colbow KM, St-Pierre J, Wilkinson DP. Aging mechanisms and lifetime of PEFC and DMFC[J]. J Power Sources 2004;127(1–2):127–34.

[80]Hydrogen F C. Infrastructure Technologies Program: Multi-Year Research, Development and Demonstration Plan[J]. US Department of Energy, Energy Efficiency and Renewable Energy, 2005.

[81]Xiao-Zi Yuan, Hui Li, et al.A review of polymer electrolyte membrane fuel cell durability test protocols[J].Journal of Power Sources 196(2011):9107-9116.

[82]Shengsheng Zhang, Xiaozi Yuan, et al.A review of accelerated stress tests of MEA durability[J].International Journal of Hydrogen Energy,34(2009):388-404.

[83]Wu J, Yuan X Z, Martin J J, et al. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2008, 184(1): 104-119.

[84]De Bruijn F A, Dam V A T, Janssen G J M. Review: durability and degradation issues of PEM fuel cell components[J]. Fuel cells, 2008, 8(1): 3-22.

[85]Zhang S, Yuan X, Wang H, et al. A review of accelerated stress tests of MEA durability in PEM fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(1): 388-404.

[86]Akita T, Taniguchi A, Maekawa J, et al. Analytical TEM study of Pt particle deposition in the proton-exchange membrane of a membrane-electrode-assembly[J]. Journal of power sources, 2006, 159(1): 461-467.

[87]Ferreira P J, Shao-Horn Y, Morgan D, et al. Instability of Pt∕ C electrocatalysts in proton exchange membrane fuel cells a mechanistic investigation[J]. Journal of The Electrochemical Society, 2005, 152(11): A2256-A2271.

[88]Holby E F, Sheng W, Shao-Horn Y, et al. Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen[J]. Energy & Environmental Science, 2009, 2(8): 865-871.

[89]Healy J, Hayden C, Xie T, et al. Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells[J]. Fuel cells, 2005, 5(2): 302-308.

[90]Escobedo G, Raiford K, Nagarajan G S, et al. Strategies for mitigation of PFSA polymer degradation in PEM fuel cells[J]. ECS Transactions, 2006, 1(8): 303-311.

[91]Yuan X Z, Li H, Zhang S, et al. A review of polymer electrolyte membrane fuel cell durability test protocols[J]. Journal of Power Sources, 2011, 196(22): 9107-9116.

[92]Yamazaki O, Oomori Y, Shintaku H, et al. Fuel Cell Seminar Abstracts[J]. Courtesy Associates, Palm Springs, 2005.

[93]Endoh E. Fuel Cell Seminar Abstracts[J]. Courtesy Associates, Palm Springs, 2005, 180.

[94]Miyoshi R, Sakiyama Y, Miwa Y, et al. Fuel Cell Seminar Abstracts[J]. Courtesy Associates, Hawaii, 2006.

[95]Cai M, Ruthkosky M S, Merzougui B, et al. Investigation of thermal and electrochemical degradation of fuel cell catalysts[J]. Journal of Power Sources, 2006, 160(2): 977-986.

[96]Schulze M, Wagner N, Kaz T, et al. Combined electrochemical and surface analysis investigation of degradation processes in polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2007, 52(6): 2328-2336.

[97]Lee C, Mérida W. Gas diffusion layer durability under steady-state and freezing conditions[J]. Journal of power sources, 2007, 164(1): 141-153.

[98]J. Wind, A. LaCroix, S. Braeuninger, P. Hedrich, C. Heller, M. Schudy, in: W. Vielstich, H.A. Gasteiger, A. Lamm (Eds.), Handbook of Fuel Cells: Fundamentals, Technology and Applications, vol. 3, John Wiley & Sons Ltd, 2003, pp. 294–307.

[99]Ma L, Warthesen S, Shores D A. Evaluation of materials for bipolar plates in PEMFCs[J]. Journal of New Materials for Electrochemical Systems, 2000, 3(3): 221-228.

[100]Pozio A, Silva R F, De Francesco M, et al. Nafion degradation in PEFCs from end plate iron contamination[J]. Electrochimica Acta, 2003, 48(11): 1543-1549.

中图分类号:

 TM911.4    

馆藏号:

 TM911.4/0290/2014    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式