- 无标题文档
查看论文信息

中文题名:

 基于链式变换的非完整机械臂路径规划    

姓名:

 李亮    

学号:

 10497109100q    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 机械电子工程    

学生类型:

 博士    

学位:

 工学博士    

学校:

 武汉理工大学    

院系:

 机电工程学院    

专业:

 机械电子工程    

研究方向:

 机器人技术与控制    

第一导师姓名:

 谭跃刚    

第一导师院系:

 武汉理工大学    

完成日期:

 2014-12-01    

答辩日期:

 2014-12-10    

中文关键词:

 非完整机械臂 ; 路径规划 ; 模型变换奇异性 ; 链式变换 ; 运动控制    

中文摘要:

随着非线性控制理论、微分几何学、计算机技术等学科的飞速发展,极大地促进了非完整机器人运动控制的研究,并已经取得了许多重要的研究成果,其中针对仿射系统的一种标准形式——链式系统的运动控制更是受到广泛重视,并已经成为该领域的研究热点之一,而对于面向模型变换设计且具有复杂机械结构的新型非完整机器人的路径规划研究并不多见。本学位论文在教育部博士点基金的支持下,开展基于链式变换的非完整机械臂路径规划的研究。

从非完整机械臂的运动学特性分析入手,推导了链式变换公式,提出了系统的模型变换奇异性问题,这是研究非完整机械臂路径规划的基础;对机械臂运动学方程的非线性坐标变换进行了分析,建立了用于描述链式空间与位形空间映射规律的坐标变换雅克比矩阵,为非完整机械臂控制输入矢量场的选择提供了理论依据。

依据机械臂的结构特征提出了模型变换奇异位形的规避方法;从机械臂的实际控制性能需求出发建立了路径线性逼近评价指标,明确了在某一局部路径规划器作用下最优的线性逼近路径;研究了存在初始误差条件下所规划路径的容错能力,提出了初始位形误差敏感度矩阵和误差容错系数,揭示了路径规划器控制参数与非完整机械臂运动控制的鲁棒性和可操作性之间的关系。

基于非线性方程求根的迭代计算方法,设计了一种将机械臂的实际目标位形作为反馈信息的迭代学习控制器,利用Gerschgorin disk定理和李普希茨条件证明了在初位形始误差和模型误差作用下该控制器可以使实际目标位形以任意速度向设定的目标位形收敛。

在分析链式变换微分同胚性的基础上,系统地研究了各关节“过零位形”运动的条件,提出了非完整机械臂关节路径过零规划的方法;定义了局部路径规划器一致连续性的概念,该性质表征了链式空间中相邻两个位形之间的路径向初始位形收敛的能力,揭示了在局部路径规划器作用下链式空间中一条路径向关节空间微分同胚映射的规律;通过计算仿真和实验研究证明了具备一致连续性的局部路径规划器能够更有效地规避模型变换奇异位形。

由于非完整机械臂具有强非线性和高耦合度的特点,提出了一种可用于链式系统的局部路径规划算法——三角函数切换控制律,基本思想是将系统在两个控制输入同时作用下的复合运动变为在单一控制输入作用下的简单运动;虽然三角函数切换控制律不具备一致连续特性,但通过控制相邻两位形的间距依然可以获得较好的路径规划性能,与时间尺度变换技术相结合不但可以有效解决机构瞬时加速度过快、力矩器饱和等问题,而且保证了所规划出的路径是处处光滑的。

搭建了三关节非完整机械臂运动控制实验平台,设计了交流伺服电机的双闭环系统,优化了运动控制平台的软件结构体系,实现了对三关节机械臂的运动控制;通过理论仿真计算与实验结果的比对,证明了所提出的路径规划方法是有效可行的。

本学位论文的研究工作对于发展非完整系统路径规划方法,探索复杂机械系统的运动本质和有效控制方法,都具有十分重要的理论与现实意义。

参考文献:

[1] Sordalen O J, Nakamura Y, Chung W J. Design of a nonholonomic manipulator[C]. IEEE International Conference on Robotics and Automation. San Diego, CA, USA. 1994

[2] J. Z. Yang E P P A. A multi-fingered hand prosthesis[J]. Mechanism and Machine Theory. 2004, 39(6): 555-581.

[3 Di Gregorio R. Type synthesis of underactuated wrists generated from fully-parallel wrists[J]. Journal of Mechanical Design, Transactions. 2012, 134(12).

[4] Di Gregorio R. Kinetostatics of S-(nS)PU-SPU and S-(nS)PU-2SPU Nonholonomic Parallel Wrists[J]. Journal of Mechanisms and Robotics. 2013, 5(4).

[5] 哈尔滨工业大学理论力学教研室. 理论力学[M]. 高等教育出版社, 2005:343.

[6] 孙汉旭,伟赵,张延恒. 新型变结构球形机器人运动分析[J]. 机械工程学报. 2013, 49(19): 40-47.

[7] 何广平,陆震,谭晓兰. 欠驱动机械臂的光滑时变指数稳定[J]. 航空学报. 2007, 28(3): 751-756..

[8] Macharet D G, Neto A A, Da Camaraneto V F, et al. Nonholonomic path planning optimization for Dubins' vehicles[C]. IEEE International Conference on Robotics and Automation. Shanghai, China. 2011

[9] Chung W J, Nakamura Y. Design and control of a chained form manipulator [J]. International Journal of Robotics Research. 2002, 21(5-6): 389-408.

[10] Nakamura Y, Chung W, Jacob O. Design and control of the nonholonomic manipulator[J]. IEEE Transactions on Robotics and Automation. 2001, 17(1): 48-59.

[11] Nakamura Y, Ezaki H, Tan Y, et al. Design of steering mechanism and control of nonholonomic trailer systems[J]. IEEE Transactions on Robotics and Automation. 2001, 17(3): 367-374.

[12] Yamaguchi H. Control of a four-steering, four-forked snake-like robot[J]. Nihon Kikai Gakkai Ronbunshu C. 2006, 72(3): 879-886.

[13] Yamaguchi H, Morinaga T, Kawakami A. A path-following feedback control law with a variable velocity for a trident steering walker and its experimental verification[C]. 8th IFAC Symposium on Nonlinear Control Systems. Bologna, Italy. 2010

[14] Yamaguchi H. Dynamical analysis of an undulatory wheeled locomotor: A trident steering walker[C]. 10th IFAC Symposium on Robot Control, SYROCO. Dubrovnik, Croatia. 2012

[15] Grosch P, Thomas F. A bilinear formulation for the motion planning of non-holonomic parallel orienting platforms[C]. IEEE International Conference on Intelligent Robots and Systems. Tokyo, Japan. 2013

[16] Grosch P, di Gregorio R, Thomas F. Generation of under-actuated manipulators with nonholonomic joints from ordinary manipulators[J]. Journal of Mechanisms and Robotics. 2010, 2(1): 1-8.

[17] 庄未,刘晓平,孙汉旭. 一种带有可伸缩臂的球形机器人建模及分析[J]. 机械科学与技术. 2010, 29(8): 1035-1041.

[18] 张文增,马献德,黄源文,等. 末端强力抓取的欠驱动拟人机器人手[J]. 清华大学学报(自然科学版)网络.预览. 2009, 49(2): 194-197.

[19] 刘建军,陈建新. 基于矢量法的月球车运动学分析[J]. 航天控制. 2011, 29(6): 8-13.

[20] 谭跃刚,邓玉辉,吴正平,等. 非完整开链机械臂的设计与运动学分析[J]. 机械工程学报. 2002, 38(5): 138-140.

[21] 谭跃刚,倪菲,吴鹏. 基于非完整约束的机械手及其运动学的研究[J]. 机械设计与研究. 2004, 20(4): 18-21.

[22] Tan Y, Jiang Z, Zhou Z. A nonholonomic motion planning and control based on chained form transformation[C]. IEEE International Conference on Intelligent Robots and Systems. Beijing, China. 2006

[23] Hermann R, Krener A. Nonlinear controllability and observability[J]. Automatic Control, IEEE Transactions on. 1977, 22(5): 728-740.

[24] Laumond J P. Feasible trajectories for mobile robots with kinematic and environment constraints.[C]. International Conference on Intelligent Autonomous Systems. Netherlands. 1986

[25] Laumond J P, Simeon T. Motion planning for a two degrees of freedom mobile robot with towing[C]. International Conference on Control and Applications. Jerusalem. 1989

[26] Laumond J P. Controllability of a multibody mobile robot[J]. Robotics and Automation, IEEE Transactions on. 1993, 9(6): 755-763.

[27] Murray R M, Sastry S S. Nonholonomic motion planning. Steering using sinusoids[C]. International Conference on Decision and Control. Hawaii. 1990

[28] Lozano-Pérez T, Wesley M A. An algorithm for planning collision-free paths among polyhedral obstacles[J]. Communications of the ACM. 1979, 22(10).

[29] Ahuactzin J M, Gupta K. A motion planning based approach for inverse kinematics of redundant robots: the kinematic roadmap[J]. Expert Systems with Applications. 1998, 14(1–2): 159-167.

[30] Amato N M. A randomized roadmap method for path and manipulation planning[C]. IEEE International Conference on Robotics and Automation. 1996

[31] Krontiris A, Louis S, Bekris K E. Multi-level formation roadmaps for collision-free dynamic shape changes with non-holonomic teams[C]. IEEE International Conference on Robotics and Automation. Minnesota,USA. 2012

[32] Hsu D. Randomized kinodynamic motion planning with moving obstacles[J]. International Journal of robotics Research. 2002, 21(3).

[33] Agha-Mohammadi A, Chakravorty S, Amato N M. Sampling-based nonholonomic motion planning in belief space via Dynamic Feedback Linearization-based FIRM[C]. IEEE International Conference on Intelligent Robots and Systems. Algarve, Portugal. 2012

[34] Haddad M, Chettibi T, Hanchi S, et al. A random-profile approach for trajectory planning of wheeled mobile robots[J]. European Journal of Mechanics. 2007, 26(3): 519-540.

[35] Park J J, Kim J H, Song J B. Path planning for a robot manipulator based on probabilistic roadmap and reinforcement learning[J]. International Journal of Control, Automation and Systems. 2007, 5(6): 674-680.

[36] Park J J, Kim H S, Song J B. Collision-free path planning for a redundant manipulator based on PRM and potential field methods[J]. Journal of Institute of Control, Robotics and Systems. 2011, 17(4): 362-367.

[37] Podse?dkowski L, Nowakowski J, Idzikowski M, et al. A new solution for path planning in partially known or unknown environment for nonholonomic mobile robots[J]. Robotics and Autonomous Systems. 2001, 34(2–3): 145-152.

[38] 朱毅,张涛,宋靖雁. 非完整移动机器人的人工势场法路径规划[J]. 控制理论与应用. 2010, 27(2): 152-158.

Yi Zhu,Tao Zhang,Jing-Yan Song. Path planning for nonholonomic mobile robots using artificial potential field method[J]. Control Theory & Applications. 2010, 27(2): 152-158.

[39] Zhu Q, Yan Y, Xing Z. Robot path planning based on artificial potential field approach with simulated annealing[C]. Sixth International Conference on Intelligent Systems Design and Applications. Jinan, China. 2006

[40] Chen F, Dij P, Huang J. Evolutionary artificial potential field method based manipulator path planning for safe robotic assembly[C]. International Symposium on Micro-NanoMechatronics and Human Science. Nagoya. 2009

[41] Tsuji T, Tanaka Y, Morasso P G, et al. Bio-mimetic trajectory generation of robots via artificial potential field with time base generator[J]. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews. 2002, 32(4): 426-439.

[42] 徐娜,陈雄,孔庆生,等. 非完整约束下的机器人运动规划算法[J]. 机器人. 2011, 33(6): 666-672.

[43] 张嗣瀛,王景才,刘晓平. 微分几何方法与非线性控制系统(1-4)[J]. 信息与控制. 1992(1): 37-43.

[44] Isidori A. Nonlinear Control Systems: An Introduction, Lecture Notes in Control and Inform[M]. Sci, Springer-Verlag, 1985.

[45] Sastry S, Li Z. Robot motion planning with nonholonomic constraints[C]. IEEE Conference on Decision and Control. Tampa, FL, USA. 1989

[46] Rico J M, Gallardo J, Ravani B. Lie algebra and the mobility of kinematic chains[J]. Journal of Robotic Systems. 2003, 20(8): 477-499.

[47] Lafferriere G. A general strategy for computing steering controls of systems without drift[C]. IEEE Conference on Decision and Control. Brighton, Engl. 1991

[48] Lafferriere G, Sussmann H. Motion planning for controllable systems without drift[C]. IEEE International Conference on Robotics and Automation. Sacramento, CA, USA. 1991

[49] Bellaiche A, Laumond J P, Chyba M. Canonical nipotent approximation of control system:application to nonholonomic motion planning[C]. IEEE Conference on Decision and Control. San Antonio. 1993

[50] Giamberardino P D, Monaco S, Normand-Cyrot D. Digital control through finite feedback discretizability[C]. IEEE International Conference on Robotics and Automation. 1996

[51] Jacob G. Motion Planning by Piecewise Constant or Polynomial Inputs[C]. Proceeding of IEAC Noulinear Control System Design Symposium. 1992

[52] Murray R M, Sastry S S. Nonholonomic motion planning. Steering using sinusoids[J]. IEEE Transactions on Automatic Control. 1993, 38(5): 700-716.

[53] Sordalen O J. Conversion of the kinematics of a car with n trailers into a chained form[C]. IEEE International Conference on Robotics and Automation , 1993. Atlanta, GA , USA. 1993

[54] Sordalen O J. Feedback control of nonholonomic mobile robots[D]. 1993.

[55] Yamaguchi H, Mori M, Kawakami A. Control of a five-axle, three-steering coupled-vehicle system and its experimental verification[C]. 18th IFAC World Congress. Milano, Italy. 2011

[56] Yamaguchi H, Mori M, Kawakami A. A path following feedback control method using parametric curves for a cooperative transportation system with two car-like mobile robots[C]. 7th IFAC Symposium on Intelligent Autonomous Vehicles. Lecce, Italy. 2010

[57] Di Gregorio R. Position analysis, path planning, and kinetostatics of single-loop RU-(nS)PU wrists[J]. Mechanism and Machine Theory. 2014, 74: 117-133.

[58] Di Gregorio R. Position Analysis and Path Planning of the S-(nS)PU-SPU and S-(nS)PU-2SPU Underactuated Wrists[J]. Position Analysis and Path Planning of the S-(nS)PU-SPU and S-(nS)PU-2SPU Underactuated Wrists. 2012, 4(2).

[59] Murray R M. Robotic control and nonholonomic motion planning[D]. University of California, Berkeley, 1990.

[60] Murray R M. Nilpotent bases for a class on nonintergrable distributions with applications to trajectory generation for nonholonomic systems[J]. Math Control Signal System. 1994, 7: 58-75.

[61] Tilbury D, Laumond J P, Murray R, et al. Steering car-like systems with trailers using sinusoids[C]. IEEE International Conference on Robotics and Automation. Nice, Fr. 1992

[62] Tilbury D, Murray R M, Sastry S S. Trajectory generation for the N-trailer problem using Goursat normal form[J]. IEEE Transactions on Automatic Control. 1995, 40(5): 802-819.

[63] Fazal U R. Discontinuous steering control for nonholonomic systems with drift[J]. Nonlinear Analysis, Theory, Methods and Applications. 2005, 63(3): 311-325.

[64] Nakamura H, Kaji T, Nishitani H, et al. Global position and posture control of a two-wheeled mobile robot using a discontinuous homogeneous control[C]. IEEE International Conference on Control Applications. Toronto. 2005

[65] Monaco S, Normand-Cyrot D. An introduction to motion planning under multirate digital control

[C]. Decision and Control, 1992., Proceedings of the 31st IEEE Conference on. 1992

[66] Fliess M, Levine J, Martin P, et al. Flatness and defect of non-linear systems: introductory theory and examples[J]. International Journal of Control. 1995, 61(6): 1327-1361.

[67] Ryu J, Agrawal S K. Differentially flat mobile manipulators mounted with an under-actuated vertical arm[C]. IEEE International Conference on Robotics and Automation. Anchorage, United states. 2010

[68] Van Loock W, Pipeleers G, Diehl M, et al. Optimal path following for differentially flat robotic systems through a geometric problem formulation[J]. IEEE Transactions on Robotics. 2014, 30(4): 980-985.

[69] Hussein I, Bloch A. Optimal control of underactuated nonholonomic mechanical systems[J]. EEE Transactions on Automatic Control. 2008, 53(3): 668-682.

[70] Duleba I, Sasiadek J Z. Nonholonomic motion planning based on Newton algorithm with energy optimization[J]. IEEE Transactions on Control Systems Technology. 2003, 11(3): 355-363.

[71] Zhan Q, Cai Y, Liu Z. Near-optimal trajectory planning of a spherical mobile robot for environment exploration[C]. IEEE International Conference on Robotics, Automation and Mechatronics. Chengdu, China. 2008

[72] Janiak M, Tchon K. Towards constrained motion planning of mobile manipulators[C]. IEEE International Conference on Robotics and Automation. Anchorage. 2010

[73] 马保离,宗光华,霍伟. 非完整链式系统的路径规划--多项式拟合法[J]. 自动化学报. 1999, 25(5): 662-666.

Baoli M. A.,Guanghua Zong,Wei Huo. Path Planning of Nonholonomic Chained Systems: a Polynomial Fitting Approach[J]. Acta Automatica Sinica. 1999, 25(5): 662-666.

[74] 郭丙华,胡跃明. 考虑障碍约束的非完整运动规划[J]. 机器人技术与应用. 2002(4): 25-27.

2002(4): 25-27.

[75] Wang Z P, Ge S S, Lee T H. Robust adaptive neural network control of uncertain nonholonomic systems with strong nonlinear drifts[J]. IEEE Transactions on Systems, Man, and Cybernetics. 2004, 34(5): 2048-2059.

[76] T. Cheng T, Sun H X, Qu Z H, et al. Neural network solution for suboptimal control of non-holonomic chained form system[J]. Transactions of the Institute of Measurement and Control. 2009, 31(6): 475-494.

[77] Hong F, Ge S Z, Pang C K, et al. Robust adaptive neuro-fuzzy control of uncertain nonholonomic systems[J]. Journal of Control Theory and Applications. 2010, 8(2): 125-138.

[78] Hong F, Ge S S, Lee T H. Robust adaptive fuzzy control of uncertain nonholonomic systems[C]. IEEE International Symposium on Intelligent Control. 2004

[79] Kinjo H, Uezato E, Duong S C, et al. Neurocontroller with a genetic algorithm for nonholonomic systems: Flying robot and four-wheel vehicle examples[J]. Artificial Life and Robotics. 2009, 13(2): 464-469.

[80] Kinjo H, Uezato E, Duong S C, et al. Neurocontroller with genetic algorithm for nonholonomic systems: Flying robot and four-wheel vehicle examples[C]. International Symposium on Artificial Life and Robotics. Oita. 2008

[81] Chen C, Rickert M, Knoll A. Combining space exploration and heuristic search in online motion planning for nonholonomic vehicles[C]. IEEE Intelligent Vehicles Symposium. Gold Coast, QLD, Australia. 2013

[82] 叶峰,叶锦华,李迪. 输入受限的非完整移动机器人的自适应模糊控制[J]. 中国机械工程. 2014, 25(8): 1010-1016.

[83] 王全,王维,李焱,等. 基于混合策略的轮式机器人路径规划方法[J]. 计算机工程与应用. 2014, 50(4).

[84] 贾鹤鸣,程相勤,张利军,等. 基于自适应Backstepping的欠驱动AUV三维航迹跟踪控制[J]. 控制与决策. 2012, 27(5): 652-664.

[85] 禹建丽,孙增圻,成久洋之. 一种快速神经网络路径规划算法[J]. 机器人. 2001, 23(3): 201-205.

[86] 王雪松,高阳,程玉虎,等. 知识引导遗传算法实现机器人路径规划[J]. 控制与决策. 2009, 24(7): 1043-1049.

[87] 曹江丽,孙潮义. 多目标遗传算法在水下机器人路径规划中的应用[J]. 武汉大学学报(信息科学版). 2010(4): 441-445.

[88] 黄钢,李德华,杨捷. 机械臂最优运动规划问题的混合粒子群算法[J]. 计算机科学. 2009, 36(11): 232-234.

[89] 戈新生,孙鹏伟. 自由漂浮空间机械臂非完整运动规划的粒子群优化算法[J]. 机械工程学报. 2007, 43(4): 34-38.

[90] 顾冬雷,李晓格,王硕. 移动机器人路径规划方法[J]. 机器人技术与应用. 2014, 27(5): 28-30.

[91] 李星毅,郑亮,施化吉. 基于NN改进PSO算法的机器人路径规划[J]. 微计算机信息. 2009, 25(12): 258-260.

[92] 费燕琼,朱跃梁,徐磊. 未知环境下模块化移动机器人路径规划的研究[J]. 哈尔滨工程大学学报. 2010, 31(9): 1248-1252.

[93] Engedy I, Horvath G. Artificial neural network based local motion planning of a wheeled mobile robot[C]. 11th IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2010 - Proceedings. Budapest, Hungary. 2010

[94] Brockett R. Asymptotical stability and feedback stabilization[J]. Differential Geometric Control Theory. 1983.

[95] Lafferriere G A, Sontag E D. Remarks on control Lyapunov functions for discontinuous stabilizing feedback[C]. Proceedings of the IEEE Conference on Decision and Control. San Antonio, TX, USA. 1993

[96] Godhavn J M, Egeland O. A Lyapunov approach to exponential stabilization of nonholonomic systems in power form[J]. Automatic Control, IEEE Transactions on. 1997, 42(7): 1028-1032.

[97] Wu Y, Zheng X. Robust stabilization of uncertain nonholonomic systems with strong nonlinear drifts[J]. 2008, 6(4).

[98] Hong Y, Wang J, Xi Z. Stabilization of uncertain chained form systems within finite settling time[J]. IEEE Transactions on Automatic Control. 2005, 50(9): 1379-1384.

[99] Marchand N, Alamir M. Discontinuous exponential stabilization of chained form systems[C]. IEEE Conference on Decision and Control. Las Vegas, NV, United states. 2002

[100] Walsh G C, Bushnell L G. Stabilization of multiple input chained form control systems[C]. Decision and Control, 1993., Proceedings of the 32nd IEEE Conference on. 1993

[101] Tayebi A, Tadjine M, Rachid A. Invariant manifold approach for the stabilization of nonholonomic chained systems: Application to a mobile robot[J]. Nonlinear Dynamics. 2001, 24(2): 167-181.

[102] 李胜,王轶卿,陈庆伟,等. 一类非完整系统的有限时间镇定控制[J]. 系统工程与电子技术. 2010, 32(2): 359-361.

[103] Bloch A, Drakunov S. Stabilization of a nonholonomic system via sliding modes[C]. IEEE Conference on Decision and Control. York, Engl. 1994

[104] Hu Y, Ge S S, Su C Y. Stabilization of uncertain nonholonomic systems via time-varying sliding mode control[J]. IEEE Transactions on Automatic Control. 2004, 49(5): 757-763.

[105] 李胜,胡维礼. 一类非完整系统镇定控制器的递推设计方法[J]. 兵工学报. 2009, 30(9): 1276-1280.

[106] Lotfiani A, Keshmiri M, Danesh M. Dynamic analysis and control synthesis of a spherical wheeled robot (Ballbot)[C]. International Conference on Robotics and Mechatronics. Tehran, Iran. 2013

[107] Sontag E, Sussmann H. Remarks on Continuous Feedback[J]. IEEE Conference on Decision and Control. 1980, 2: 916-921.

[108] Samson C. Velocity and torque feedback control of a nonholonomic cart[M]. Advanced Robot Control, Canudas De Wit C, Springer Berlin / Heidelberg, 1991: 162, 125.

[109] Samson C, Ait Abderrahim K. Feedback control of a nonholonomic wheeled cart in Cartesian space[C]. IEEE International Conference on Robotics and Automation. Sacramento, USA. 1991

[110] Samson C. Control of chained systems application to path following and time-varying point-stabilization of mobile robots[J]. IEEE Transactions on Automatic Control. 1995, 40(1): 64-77.

[111] Samson C. Time-varying Feedback Stabilization of Car-like Wheeled Mobile Robots[J]. The International Journal of Robotics Research. 1993, 12: 55-64.

[112] Coron J M, Pomet J. A remark on the design of time-varying stabilizing control laws for controllable systems without drift[C]. IFAC Nonlinear Control Systems Design Symposium. 2002

[113] Teel A R, Murray R M, Walsh G. Nonholonomic control systems: from steering to stabilization with sinusoids[C].the 31st IEEE Conference on Decision and Control. 1992

[114] Kim J H, Joo C B. Optimal motion planning of redundant manipulators with controlled task infeasibility[J]. Mechanism and Machine Theory. 2013, 64: 155-174.

[115] 李胜,马国梁,维礼. 一类不确定非完整移动机器人的时变自适应镇定[J]. 机器人. 2005, 27(1): 10-19.

[116] 李明军,马保离. 非完整链式系统的全局连续K指数镇定[J]. 北京航空航天大学学报. 2011, 37(4): 452-457.

[117] 马保离,霍伟. 非完整链式系统的时变光滑指数镇定[J]. 自动化学报. 2003, 29(2): 301-305.

[118] 刘盛平,吴立成,陆震. PPR型平面欠驱动机械臂的点位控制[J]. 控制理论与应用. 2007, 24(3): 435-439.

[119] 谭跃刚. 基于非完整约束的欠驱动机械手及其运动控制的研究[D]. 武汉理工大学, 2005.

[120] 谭跃刚,周祖德. 摩擦圆盘运动合成分解机构[P]. 中华人民共和国发明专利, 专利授权时间: 2004年9月, 专利号码: ZL 02 1 47771 X.

[121] 理查德?摩雷,李泽湘,夏恩卡?卡斯特里. 机器人操作的数学导论[M]. 机械工业出版者, 1998:217.

[122] 熊友伦. 机器人技术基础[M]. 华中科技大学出版社, 1992:62.

[123] Galicki M. Constraint control of mobile manipulators[M]. Springer Verlag, Tiergartenstrasse 17, Heidelberg, D-69121, Germany, 2012.

[124] Divelbiss A W, Wen J T. Path space approach to nonholonomic motion planning in the presence of obstacles[J]. IEEE Transactions on Robotics and Automation, 1997,13(3):443-451.

[125] 李庆阳,王能超,易大义. 数值分析[M]. 清华大学出版社,施普林格出版社, 2005:295-297.

[126] S.Monaco and D. Normand-Cyrot. On The Sampling of A Linear Analytic Control System[C]. 24th Conference on Decision and Control, Lauderdale,FL, Dec.1985

[127] D.Tibury and A. Chelouah. Steering a Three-Input Nonholonomic System using Multi-rate Controls[C]. the European Control Conference, Groningen, Netherlands,1993.

[128] Li, Sheng; Ma, Guoliang; Chen, Qingwei; Wu, Xiaobei; Hu, Weili, Nonholonomic motion planning: Steering using bang-bang control[C], American Control Conference, v 5, p 4653-4656, 2004.

中图分类号:

 TP241    

馆藏号:

 TP241/B100/2014    

备注:

 403-西院分馆博硕论文库;203-余家头分馆博硕论文库    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式